Future Index

Acetyl-l-Carnitine/Alpha Lipoic Acid Abstracts


    Link to Linus Pauling Institute Micronutrient Information Center.

Mitochondrial aging: open questions.

Beckman KB, Ames BN.

Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA. kbeckman@uclink4.berkeley.edu

Interest in the role of mitochondria in aging has intensified in recent years. This focus on mitochondria originated in part from the free radical theory of aging, which argues that oxidative damage plays a key role in degenerative senescence. Among the numerous mechanisms known to generate oxidants, leakage of the superoxide anion and hydrogen peroxide from the mitochondrial electron transport chain are of particular interest, due to the correlation between species-specific metabolic rate ("rate of living") and life span. Phenomenological studies of mitochondrial function long ago noted a decline in mitochondrial function with age, and on-going research continues to add to this body of knowledge. The extranuclear somatic mutation theory of aging proposes that the accumulation of mutations in the mitochondrial genome may be responsible in part for the mitochondrial phenomenology of aging. Recent studies of mitochondrial DNA (mtDNA) deletions have shown that they increase with age in humans and other mammals. Currently, there exist numerous important and fundamental questions surrounding mitochondria and aging. Among these are (1) How important are mitochondrial oxidants in determining overall cellular oxidative stress? (2) What are the mechanisms of mitochondrial oxidant generation? (3) How are lesions and mutations in mtDNA formed? (4) How important are mtDNA lesions and mutations in causing mitochondrial dysfunction? (5) How are mitochondria regulated, and how does this regulation change during aging? (6) What are the dynamics of mitochondrial turnover? (7) What is the relationship between mitochondrial damage and lipofuscinogenesis? (8) What are the relationships among mitochondria, apopotosis, and aging? and (9) How can mitochondrial function (ATP generation and the establishment of a membrane potential) and dysfunction (oxidant generation) be modulated and degenerative senescence thereby treated?

Publication Types:
PMID: 9928425 [PubMed - indexed for MEDLINE]

(R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate.

Hagen TM, Ingersoll RT, Lykkesfeldt J, Liu J, Wehr CM, Vinarsky V, Bartholomew JC, Ames AB.

Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.

A diet supplemented with (R)-lipoic acid, a mitochondrial coenzyme, was fed to old rats to determine its efficacy in reversing the decline in metabolism seen with age. Young (3 to 5 months) and old (24 to 26 months) rats were fed an AIN-93M diet with or without (R)-lipoic acid (0.5% w/w) for 2 wk, killed, and their liver parenchymal cells were isolated. Hepatocytes from untreated old rats vs. young controls had significantly lower oxygen consumption (P<0. 03) and mitochondrial membrane potential. (R)-Lipoic acid supplementation reversed the age-related decline in O2 consumption and increased (P<0.03) mitochondrial membrane potential. Ambulatory activity, a measure of general metabolic activity, was almost threefold lower in untreated old rats vs. controls, but this decline was reversed (P<0.005) in old rats fed (R)-lipoic acid. The increase of oxidants with age, as measured by the fluorescence produced on oxidizing 2',7'-dichlorofluorescin, was significantly lowered in (R)-lipoic acid supplemented old rats (P<0.01). Malondialdehyde (MDA) levels, an indicator of lipid peroxidation, were increased fivefold with age in cells from unsupplemented rats. Feeding rats the (R)-lipoic acid diet reduced MDA levels markedly (P<0.01). Both glutathione and ascorbic acid levels declined in hepatocytes with age, but their loss was completely reversed with (R)-lipoic acid supplementation. Thus, (R)-lipoic acid supplementation improves indices of metabolic activity as well as lowers oxidative stress and damage evident in aging.

PMID: 9973329 [PubMed - indexed for MEDLINE]

Full Text

Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress.

Hagen TM, Liu J, Lykkesfeldt J, Wehr CM, Ingersoll RT, Vinarsky V, Bartholomew JC, Ames BN.

Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.

Mitochondrial-supported bioenergetics decline and oxidative stress increases during aging. To address whether the dietary addition of acetyl-l-carnitine [ALCAR, 1.5% (wt/vol) in the drinking water] and/or (R)-alpha-lipoic acid [LA, 0.5% (wt/wt) in the chow] improved these endpoints, young (2-4 mo) and old (24-28 mo) F344 rats were supplemented for up to 1 mo before death and hepatocyte isolation. ALCAR+LA partially reversed the age-related decline in average mitochondrial membrane potential and significantly increased (P = 0.02) hepatocellular O(2) consumption, indicating that mitochondrial-supported cellular metabolism was markedly improved by this feeding regimen. ALCAR+LA also increased ambulatory activity in both young and old rats; moreover, the improvement was significantly greater (P = 0.03) in old versus young animals and also greater when compared with old rats fed ALCAR or LA alone. To determine whether ALCAR+LA also affected indices of oxidative stress, ascorbic acid and markers of lipid peroxidation (malondialdehyde) were monitored. The hepatocellular ascorbate level markedly declined with age (P = 0.003) but was restored to the level seen in young rats when ALCAR+LA was given. The level of malondialdehyde, which was significantly higher (P = 0.0001) in old versus young rats, also declined after ALCAR+LA supplementation and was not significantly different from that of young unsupplemented rats. Feeding ALCAR in combination with LA increased metabolism and lowered oxidative stress more than either compound alone.

PMID: 11854487 [PubMed - indexed for MEDLINE]

Full Text

Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha -lipoic acid.

Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, Ames BN.

Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720, USA.

Accumulation of oxidative damage to mitochondria, protein, and nucleic acid in the brain may lead to neuronal and cognitive dysfunction. The effects on cognitive function, brain mitochondrial structure, and biomarkers of oxidative damage were studied after feeding old rats two mitochondrial metabolites, acetyl-l-carnitine (ALCAR) [0.5% or 0.2% (wt/vol) in drinking water], and/or R-alpha-lipoic acid (LA) [0.2% or 0.1% (wt/wt) in diet]. Spatial memory was assessed by using the Morris water maze; temporal memory was tested by using the peak procedure (a time-discrimination procedure). Dietary supplementation with ALCAR and/or LA improved memory, the combination being the most effective for two different tests of spatial memory (P < 0.05; P < 0.01) and for temporal memory (P < 0.05). Immunohistochemical analysis showed that oxidative damage to nucleic acids (8-hydroxyguanosine and 8-hydroxy-2'-deoxyguanosine) increased with age in the hippocampus, a region important for memory. Oxidative damage to nucleic acids occurred predominantly in RNA. Dietary administration of ALCAR and/or LA significantly reduced the extent of oxidized RNA, the combination being the most effective. Electron microscopic studies in the hippocampus showed that ALCAR and/or LA reversed age-associated mitochondrial structural decay. These results suggest that feeding ALCAR and LA to old rats improves performance on memory tasks by lowering oxidative damage and improving mitochondrial function.

PMID: 11854529 [PubMed - indexed for MEDLINE]

Full Text